Caten Documentation

  • Home
  • Quickstart
  • Development
  • API Reference
    • caten/air
    • caten/aasm
    • caten/codegen
    • caten/api
      • Overview
      • Tensor
      • Func
      • Module
      • Model
      • Initializers
      • ShapeTracker
      • Facet API
      • StateDict
    • caten/nn
      • Activation
      • Convolution
      • Criterion
      • Embedding
      • Linear
      • Normalization
      • Padding
      • Pooling
      • Encoding
      • Optimizers
  • Ready to use packages
    • Overview
    • caten/apps.gpt2
  • External Packages
    • caten/gguf
    • caten/oonx
    • caten/llm
In this article
  • Overview

Overview

  1. Caten Documentation
  2. Ready to use packages
  3. Overview
|
  • Share via

  •  Edit this article

Overview

Do you want to integrate Caten's features into your Common Lisp application?

With caten/apps, you can effortlessly experiment with inference using ready-made implementations of various deep learning models.

caten/apps is a suite of packages that implement pipelines to smoothly perform the following tasks:

  • Automatically download pretrained weights

  • Automatically optimize and compile models for inference

For instance, text generation inference provided by caten/apps.gpt2 can be accomplished in just two lines:

(defparameter *model* (make-gpt2 :gpt2))
(gpt2-generate *model* "What is the answer to life, and the world?")

If you're considering contributing to Caten, we warmly welcome PRs that add new models to caten/apps. If you've implemented a model using Caten, please consider adding it to caten/apps! (Feel free to create a PR!)

Search
Enter a keyword to search.